
GENERAL CUDA TIPS
CS179 2021 – ETHAN JASZEWSKI



NVIDIA LIBRARIES

 cuBLAS

 Generalized BLAS package that runs on GPU

 Highly performance tuned (never write your own BLAS 

kernels)

 cuSPARSE

 Performant sparse matrix multiplication library

 Supports fully sparse and mixed (i.e., sparse and dense) 

operations

 cuSOLVER

 Performant solvers for dense and sparse matrices

 cuRAND

 Performant GPU-oriented random number generation

 Callable both in-kernel and via host code

 cuFFT

 Performant GPU FFT with FFTW-style interface

 Supports multi-gpu and asynchronous computation

 cuDNN

 GPU-accelerated library of ML primitives

 Highly performance tuned 



USEFUL OPERATIONS

 Warp Shuffle

 Fast way to exchange data within a warp

 Helps avoid __syncthreads() calls

 Helps simplify code significantly

 Shared Memory Atomics

 Normal atomic operations – just to shared memory

 Much faster than global memory atomics

 Available on Maxwell and later GPUs



NUMBA

 Essentially just CUDA in Python

 Easy interop with Numpy

 Can be used through Jupyter (i.e., Google Colab)

 Provides bindings to Nvidia APIs through pyculib

 pyculib provides:

 cuBLAS

 cuSPARSE

 cuRAND

 cuFFT



MISC. TIPS

 Pay attention to block and grid dimensions

 Well-dimensioned kernels can be a lot faster

 Different kernels might need different block shapes

 Avoid atomic operations when possible

 Atomic operations and __syncthreads() are slow!

 Pay attention to memory

 Most kernels are memory bandwidth limited

 Try to do a “good amount” of work for the input data

 Use the Nvidia APIs

 They are highly optimized for most operations

 Avoid premature optimization

 Start simple, then improve iteratively

 Don’t optimize things that don’t matter

 Enable –O3 on your compiler!



QUESTIONS?


